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Lecture 12 Highlights 
Phys 402 

 
 We discussed the structure of the periodic table based on the concept of electrons 
filling Hydrogenic ‘orbitals’ as the nuclear charge is increased.  The Pauli exclusion 
principle prevents double occupation of electron states in an atom.  Therefore, every 
electron added to an atom must have a unique list of quantum numbers |𝑛𝑛, ℓ,𝑚𝑚ℓ,𝑚𝑚𝑠𝑠⟩ 
associated with its state.  The electrons fill these orbitals in the order of increasing 𝑛𝑛 that 
we would expect from the solution of the unperturbed hydrogen atom (since 𝐸𝐸𝑛𝑛0 =
−13.6 𝑒𝑒𝑒𝑒 𝑍𝑍2

𝑛𝑛2
, where the nuclear charge of the Hydrogenic atom nucleus is +𝑍𝑍𝑒𝑒2).  At some 

point (namely Ar → K) the order is altered, and a state with larger n but smaller ℓ is favored 
over one with smaller 𝑛𝑛 but larger ℓ.  The reason for this is the fact that ℓ = 0 classical 
orbits involve the electron spending more time inside the screening cloud surrounding the 
nucleus created by the core electrons.  In addition, the larger n but smaller ℓ orbital has a 
smaller Coulomb overlap with the core electrons, also tending to favor it.  This is the same 
effect mentioned in the last lecture (illustrated here), and becomes increasingly important 
for atoms of larger nuclear charge.   

 
We also discussed the formation of a covalent bond, using the hydrogen molecule 

H2 as an example.  When two hydrogen atoms are brought together and the electron 
wavefunctions overlap we have to construct a fully anti-symmetrized wavefunction for the 
molecule.  As with He, this involves constructing symmetric and anti-symmetric space 
wavefunctions, along with symmetric and anti-symmetric spinor wavefunctions.  The 
spinors are again the spin-singlet (anti-symmetric) and spin-triplet states (symmetric). The 
space wavefunctions specify the nucleus and electron, and have the following form: 
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 (super-scripts “A” and “S” stand for Antisymmetric and Symmetric, respectively).  Here 

);1(100 aψ means electron 1 is orbiting nucleus a in the 𝑛𝑛ℓ𝑚𝑚 =  100 state.  These 
wavefunctions are overall anti-symmetric upon exchange of all the coordinates of the 
electrons.  (Note that the nuclei do not have overlapping wavefunctions.) 
 By considering a sketch of the total wavefunction of the space symmetric and space 
anti-symmetric wavefunctions and corresponding probability densities, one finds that the 
symmetric space case has higher probability density for finding the two electrons between 
the nuclei.  This has three effects; it screens the nucleus-nucleus repulsive interaction, it 
increases the electron-nucleus attractive interaction by allowing the electrons to spend time 
close to both nuclei, however it increases the electron-electron Coulomb repulsion.  The 
net effect is to make the symmetric space wavefunction more energetically favorable. 
 More quantitatively, one can evaluate the expectation value of the H2 molecule 
Hamiltonian as a function of inter-nuclear distance.  This shows that the symmetric space 
(aka “bonding state”) wavefunction has a bound state of the two hydrogen atoms, except 
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at very small inter-nuclear distance, while the anti-symmetric space wavefunction (aka 
“anti-bonding state”) has a positive energy at all inter-nuclear distances. 
 The plot of 〈ℋ𝐻𝐻2

𝐺𝐺𝐺𝐺〉 vs. inter-nuclear distance 𝑅𝑅 shows a clear minimum at an 
equilibrium distance 𝑅𝑅𝑒𝑒.  The potential around that point is roughly parabolic, so we can 
write 〈ℋ𝐻𝐻2

𝐺𝐺𝐺𝐺〉(𝑅𝑅) ≈ −𝑉𝑉0 + 1
2

 𝑘𝑘 (𝑅𝑅 − 𝑅𝑅𝑒𝑒)2 + ⋯  We can treat small vibrations of the 
molecule from equilibrium as a one-dimensional quantum harmonic oscillator.  In the case 
of the KCl molecule, one has 𝑉𝑉0 = 4.42 𝑒𝑒𝑉𝑉 and ℏ𝜔𝜔 = 0.0346 𝑒𝑒𝑉𝑉, which comes from the 
curvature of the potential energy at the bottom of the well and the reduced mass of the KCl 
molecule.  The vibrational energy levels are given by 𝐸𝐸 = −𝑉𝑉0 + 0.0346 𝑒𝑒𝑉𝑉 (𝜈𝜈 + 1

2
), 

where 𝜈𝜈 = 0, 1, 2, 3, …  Note that there are roughly 𝑒𝑒0
ℏ𝜔𝜔

~100 vibrational energy levels in 
the well. 
 A diatomic molecule can also rotate about an axis that runs through the center of 
mass (CM) of the molecule.  The classical Hamiltonian describes the kinetic energy of 
rotation as ℋ = 𝐿𝐿2/2𝐼𝐼, where 𝐿𝐿 is the angular momentum of the molecule in its rotating 
state, and 𝐼𝐼 is the moment of inertia for the molecule rotation about the chosen axis.  The 
quantum Hamiltonian converts the angular momentum squared into the familiar 𝐿𝐿�2 
operator: ℋ� = 𝐿𝐿�2/2𝐼𝐼.  The eigenvalues of this operator are just ℓ(ℓ + 1)ℏ2, hence the 
energy eigenvalues are 𝐸𝐸ℓ = ℓ(ℓ + 1)ℏ2/2𝐼𝐼, where the angular momentum quantum 
number can be ℓ = 0, 1, 2, 3, …  In contrast to the constant-spacing vibrational energy 
levels, these energy levels become further apart with increasing quantum number.  The full 
ro-vibrational energy level structure is sketched in the last slide of this link. 
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